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Four-state rock-paper-scissors games in constrained Newman-Watts networks
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We study the cyclic dominance of three species in two-dimensional constrained Newman-Watts networks
with a four-state variant of the rock-paper-scissors game. By limiting the maximal connection distance R,y in
Newman-Watts networks with the long-range connection probability p, we depict more realistically the sto-
chastic interactions among species within ecosystems. When we fix mobility and vary the value of p or R,
the Monte Carlo simulations show that the spiral waves grow in size, and the system becomes unstable and
biodiversity is lost with increasing p or R, These results are similar to recent results of Reichenbach er al.
[Nature (London) 448, 1046 (2007)], in which they increase the mobility only without including long-range
interactions. We compared extinctions with or without long-range connections and computed spatial correlation
functions and correlation length. We conclude that long-range connections could improve the mobility of
species, drastically changing their crossover to extinction and making the system more unstable.
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The question of how biological diversity is maintained
has initiated increasingly more research from multiple angles
in recent decades [1-6]. Mathematical modeling of popula-
tion dynamics is widely recognized as a useful tool in the
study of many interesting features of ecological systems.
However, the enormous number of interacting species found
in the Earth’s ecosystems is a major challenge for theoretical
description. For this reason, researchers have built many
simplified models to describe the evolution of ecological sys-
tems over time [3,7-11]. One of the simplest cases is of three
species that have relationships analogous to the game of
rock-paper-scissors (RPS), where rock smashes scissors,
scissors cut paper, and paper wraps rock. It is a well-studied
model of population dynamics [12-16], and it can be classi-
fied in two ways: three-state or four-state models, depending
on whether we consider the empty state or not. It is well
known that such a cyclic dominance can lead to nontrivial
spatial patterns as well as coexistence of all three species.

Recently, Reichenbach and co-workers studied a stochas-
tic spatial variant of the RPS game [4,5,17]. In their study,
they run the game with four states: the three original cycli-
cally dominating states and a fourth one that denotes empty
space. In addition, they introduced a form of mobility to
mimic a central feature of real ecosystems: animal migration,
bacteria run, and tumble. They found that mobility has a
critical influence on species diversity [4,5,17]. When mobil-
ity exceeds a certain value, biodiversity is jeopardized and
lost. In contrast, below this critical threshold value, spatial
patterns can form and help enable stable species diversity.
We shall take this population model as a basis to construct a
new version of the three-species food chain in the con-
strained Newman-Watts (NW) networks. In the model stud-
ied by Reichenbach and co-workers, they consider mobile
individuals of three species (referred to as A, B, and C),
arranged on a spatial lattice, where each individual can only
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interact with its nearest neighbors. In this study, we introduce
some stochastic long-range interactions between elements of
the lattice. The stochastic long-range interactions occur when
there exist long-range connections in the NW networks,
mimicking a more real ecosystem: e.g., birds can fly, so they
can prey not only near their nest but also at longer distances
from the nest [18], pathogens disperse by air and water
[19,20], biological invasions related to human influence oc-
cur over long distances [21], and the long-range dispersal of
plant seeds is driven by large and migratory animals, ocean
currents, and human transportation [22]. Of course, the long-
range interaction cannot be infinite, so we limit the distance
of long-range interactions to R,,,,. That is, the individuals are
assigned an interaction distance. For the sake of simplicity,
we consider that the maximum interaction distance R, and
the long-range interaction probability p are the same for all
species. With Monte Carlo (MC) simulations we show that
the maximum interaction distance R,,, and the long-range
interaction probability p play an important role in the coex-
istence of all three species.

We consider the four-state RPS model which was de-
scribed in detail in Refs. [4,12,17]. Here, we give a recapitu-
lation

o o o

AB—AE, BC—BE, CA—CE.

" M M
AE—AA, BE—BB, CE—CC. (1)

Here, A, B, and C denote the three species which cyclically
dominate each other, and E denotes an available empty
space. An individual of species A can kill B, with successive
production of E. Cyclic dominance occurs as A can kill B, B
preys on C, and C beats A in turn, closing the cycle. These
processes are called “selection” and occur at a rate o. To
mimic a finite carrying capacity, each species can reproduce
only if an empty space is available, as described by the re-
action AE— AA and analogously for B and C. For all spe-
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FIG. 1. (a) The structure of a constrained NW network. All the
long-range connections within the range [1,R,,,,] and the range of
Riax 18 1 =R« =L. (b) The characteristic path length as a function
of the long-range connection probability p. The maximal long-range
connection distance R, =L/4.

cies, these reproduction events occur at a rate u.
In addition, to mimic the possibility of migration, one can
amend the reaction equations with an exchange reaction

€

XY—YX. (2)

where X and Y denote any state (including empty space) and
€ is the exchange rate. The mobility was defined as m
=2eN"! in Ref. [4], where N denotes the number of sites.
From a dynamic viewpoint, the RPS game can be described
by the mean-field rate equations [12,17],

da =alu(1 - p) - oc],
ab = alu(1 - p) - oa],

dgc=alp(1 - p) - ab], (3)

where a, b, and ¢ are densities of the states A, B, and C,
respectively. That is,

a=N,JN, b=Ny/N, c=NJN, (4)

where N,, N;,, and N, are the number of species of A, B, and
C, respectively. p=a+b+c is the total density. These equa-
tions have a reactive fixed point a:b:c:iﬁ—”, which is lin-
early unstable [17].

The mean-field approach does not take into account the
spatial structure and assumes the system to be well mixed.
Therefore, it can only serve as a rough model for dynamic
processes. Here, we consider the spatial version of the above
model in the complex NW network structure [23], and we
use the Monte Carlo simulation approach. The two-
dimensional (2D) NW network was constructed as follows:
(i) we first built a 2D LX L (N=L?) regular square lattice.
So, the total number of connections is 2N. (ii) Then, we
randomly chose two sites that have no direct connection. If
the shortest path length between the two sites was shorter
than the maximal distance R,,,,, we connected the sites; if
not, we choose other two sites, until the number of the long-
range connections equaled 2pN. Here, the shortest path
length refers to that we did not take into account the long-
range connections.

The above procedure produces a constrained NW network
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structure as shown in Fig. 1(a). In Fig. 1(b), we plot the
characteristic path length as a function of the long-range con-
nection probability p. The characteristic path length de-
creases with an increase in the long-range connection prob-
ability p. The long-range connection probability p is
equivalent to the rewiring probability in a Watts-Strogatz
network but connections are added without removing any of
the original ones. So, the modified NW structure is charac-
terized by the probability p and the maximal long-range con-
nection distance R,,.. Once the network was built as de-
scribed above, the evolution of the system over time obeyed
the following rules (modified from Refs. [4,17]): (i) consider
mobile individuals of three species (referred to as A, B, and
C), scattered randomly on a square lattice as in Fig. 1(a) with
periodic boundary conditions. Every lattice site was initially
occupied by an individual of species A, B, or C, or left
empty. (ii) At each simulation step, a random individual was
chosen to interact with a randomly chosen individual directly
connected to it. A process (selection, reproduction, or mobil-
ity) was chosen randomly with a probability proportional to
the rates, and the corresponding reaction is executed.

In the above process, N=L? simulation steps constitute
one Monte Carlo step (MCS). During one MCS all lattice
sites had one chance to interact. Over time, the spatial dis-
tributions of A, B, and C species changed from one MCS to
another, providing the evolution of the system at the micro-
scopic level.

According to Ref. [17], Eq. (3) could be cast into the form
of the complex Ginzburg-Landau equation (CGLE). In ac-
cordance with the known behaviors of the CGLE, it was
found that the spatial four-state model with diffusion leads to
the formation of spirals. The spirals’ wavelength A is propor-
tional to the square root of mobility [4,17]. To investigate
how the long-range interaction probability p and the maxi-
mal distance R, affect the behaviors of the four-state
model, we ran MC simulations of this model in the con-
strained NW network with periodic boundary conditions. All
the results that we present were obtained starting from a
random initial distribution of individuals and vacancies, and
each site was in one of the four possible states. The densities
of A, B, and C coincided with the values of the unstable
reactive fixed point of the rate Egs. (3). We considered equal
selection and reproduction rates, which were set u=o0=1
[17]. So, all four states initially occurred with equal probabil-
ity 1/4.

In Fig. 2, we plot typical snapshots of the reactive steady
states for various values of the maximal interaction distance
R« When R, is short, long-range interactions have little
effect, and all species coexist. The pattern of spiral waves in
Fig. 2(a) is similar to the case without long-range interac-
tions. With increasing R,,,,, the spiral waves grow in size
and eventually disappear for longer enough values of R,,.
When the spiral waves disappear, the system becomes a uni-
form state where only one species exists and the others have
died out. This process is similar to the result from increased
mobility m in the lattice simulation without long-range inter-
actions in Ref. [4]. In addition, we computed the extinction
probability P, that two species have gone extinct after
10 000 MCS (see Fig. 3). Figure 3 clearly shows that there
exists a critical value R.~ 30 in the process of phase transi-
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FIG. 2. (Color online) Snapshots of the reactive steady state for
m=4x107%, u=0=1, and system size L=1000 (e=2). The long-
range connection probability p=0.08, and the maximal interaction
distance increases from R, =2 to 120.

tion from coexistence (P,,, tends to zero) to extinction (P,,,
approaches 1). Of course, the critical value R, depends on
the other parameters, such as the system size, mobility, and
SO on.

To investigate how the long-range connection probability
p affects the coexistence, we fixed the maximal long-range
interaction distance to R,,,,=10 and varied the probability p.
The simulation results are shown in Fig. 4, and the depen-
dence of the extinction probability P,,, on p is plotted in Fig.
5. It turns out that p has effects similar to those of R, on
the extinction probability and spiral wave pattern. There also
exists a critical value p.=~0.06 in the process of phase tran-
sition from coexistence (P,,, tends to zero) to extinction (P,,,
approaches 1). The critical value p, depends on the other
parameters in the model, as well.

In Ref. [4], the authors verified that the spiral wavelength
increases with individual mobility and that the wavelength is
proportional to vVm. They found that there exists a critical
mobility M.. When mobility is greater than M, the pattern
outgrows the system size, causing loss of biodiversity.

In this work, we obtain similar results in the case of fixed
mobility and variable long-range connection probability p or
variable maximal interaction distance R,,,,. This means that
increasing p or R,,.. is equivalent to increasing the mobility.
Although the long-range interaction does not directly change
the exchange rate e, it does change the spatial structure and
leads to faster interactions, particularly for exchange. So, in-
creasing p or R, increases mobility m indirectly.

In Fig. 6(a), we plot the dependence of P,,, on mobility m
in the presence of long-range interactions. With increasing
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FIG. 3. Extinction probability as a function of the maximal
long-range interaction distance R, Parameters: L=200, ¢
=10,000 MCS, u=0=1, and m=1X10"*. As R,,,, increases, the
transition from stable coexistence (P,,,=0) to extinction (P,,=1)
sharpens at a critical value R.~30.
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FIG. 4. (Color online) Snapshots of the reactive steady state for
m=1X10"4, u=o=1, and system size L=200 (e=2). The fixed
maximal interaction distance R,,,,=10, and the long-range connec-
tion probability increases from p=0.0 to 0.55.

mobility m, a sharpened transition emerges at a critical value
M. ~19X 10~*, which is smaller than the value (4.5*0.5)
X 107* provided in Ref. [4]. In Fig. 6(b), we also compute
P,,, without long-range interactions (p=0), holding the other
parameters the same in Fig. 6(a). In these conditions, it takes
much longer (r=10N MCS) to reach the critical value M,
~4x107*, which approximately coincides with the value
(4.5+0.5) X 107™*. That is to say, in this case the system is
more stable than with long-range interactions.

It is well known that long-range connections change spa-
tial structure dramatically. To learn more information about
the effect of long-range connections on the emerging spiral
patterns, we computed the equal-time correlation function
gua(|r=r']) at r and ' of species A for the system’s steady
state, which is defined in Ref. [17], as

gaallr=r')) =(a(r,0a(r',0)) = (a(r,.)Xa(r",0),  (5)

where (...) stands for an average over all histories.

Figure 7(a) plots g44 obtained from MC simulations.
When the separating distance reaches zero, the correlation
reaches its maximal value. With increasing distance, the cor-
relation decreases and the spatial oscillations appear. This
oscillation reflects the underlying spiraling spatial structures
where the three species alternate in turn. Furthermore, the
correlation functions could be characterized by their correla-
tion length /.,,,, which is the length at which the correlations
decay by a factor 1/e from their maximal value. The value of
l.,), is obtained by fitting g,,(r) to exponentials e~"/corr. This
value conveys information on the typical size of the spirals
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FIG. 5. The extinction probability as a function of the long-
range connection probability p. Parameters: L=100, ¢
=10 000 MCS, u=0=1, and m=2X 107>, As p increases, the tran-
sition from stable coexistence (P,,=0) to extinction (P,,=1)
sharpens at a critical value p,.=0.06.
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FIG. 6. The extinction probability as a function of mobility: (a)
with long-range connections, the transition from stable coexistence
to extinction sharpens at a critical mobility M,.~1.9X 1074, ¢
=10000 MCS. (b) Without long-range connections, M, ~4.0
X 1074, Parameters: u=o=1, p=0.02, R,,,x=L/4.

[24]. In Fig. 7(b), we show the dependence of I.,,, on the
maximal long-range interaction distance R,,,. The results
confirm the scaling relationship /.,,.*R,, for the fixed
long-range connection probability p. In addition, it can be
observed that the linear fit is less good when R, ,, around
100. Through extra numerical simulations on the correlation
length, we found that when R, is around or above 100, the
system would be at extinction in a high probability. This
could affect the correlation and correlation length.

In summary, we studied the influence of random long-
range connection on four-state RPS games with NW net-
works based on extensive MC simulations. For a fixed maxi-
mal interaction distance R,,,, as the probability of long-
range connections p increases, we observe that the spiral
waves grow in size and (for larger p) disappear. When the
spiral waves disappear, the system reaches a uniform state
and biodiversity is lost. There exists a critical value p, sepa-
rating coexistence from extinction. Similar behaviors are ob-
served with increasing R, for a fixed p. To close more
ecological realistic model, we also consider the case that
XE—->FEX occur with a smaller probability where X and E
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FIG. 7. (Color online) (a) The spatial correlation g44(r) as a
function of r in the reactive steady state. (b) The dependence of
correlation length /.,,, on the maximal long-range interaction dis-
tance R, Correlation length is depicted as circle. The black line is
the linear fit. Parameters: L=1000, m=1.2X 107>, t=6000 MCS,
and u=o=1.

(empty place) are not neighboring sites. When p or R,
increases, we observe that both the size of spiral waves grow
more slowly and the process of phase transition from coex-
istence to extinction are slower than before. We compared
the critical value M. obtained in two cases: with and without
long-range connection. It is found that M, changes drasti-
cally and the systems becomes more unstable if even a weak
long-range connection is presented. We conclude that long-
range interactions could result in improved mobility, and it
has dramatic effects on species coexistence. This point is
also confirmed by the equal-time correlation functions for
the system’s steady state and by the correlation length for
different R ..
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